
The ADEPT Digital Library Architecture
Greg Janée

Department of Computer Science
University of California, Santa Barbara

+1 (805) 893 8453

gjanee@alexandria.ucsb.edu

James Frew
Donald Bren School of Environmental Science and

Management
University of California, Santa Barbara

+1 (805) 893 7356

frew@bren.ucsb.edu

ABSTRACT
The Alexandria Digital Earth ProtoType (ADEPT) architecture is
a framework for building distributed digital libraries of
georeferenced information. An ADEPT system comprises one or
more autonomous libraries, each of which provides a uniform
interface to one or more collections, each of which manages
metadata for one or more items. The primary standard on which
the architecture is based is the ADEPT bucket framework, which
defines uniform client-level metadata query services that are
compatible with heterogeneous underlying collections. ADEPT
functionality strikes a balance between the simplicity of Web
document delivery and the richness of Z39.50. The current
ADEPT implementation runs as servlet-based middleware and
supports collections housed in arbitrary relational databases.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Systems Issues; D.2.12
[Interoperability]: Data mapping; H.3.5 [Online Information
Services]: Web-based services.

General Terms
Design, Standardization.

Keywords
bucket framework; collection discovery; distribution;
interoperability; metadata.

1. INTRODUCTION
The Alexandria Project [25] is a consortium of researchers,
engineers, and educators, spanning the academic, public, and
private sectors, working to develop distributed digital libraries for
heterogeneous georeferenced information. Distributed means that
a library's components may be spread across the Internet, as well
as coexisting on a single desktop. Heterogeneous means that a
library may contain multiple types of digital information,
including non-traditional items such as remotely-sensed imagery,
executable models, and multimedia instructional materials.

Georeferenced means that, whenever possible, each item in a
library is associated with one or more regions on the Earth's
surface. (We refer to these regions as the item's footprint.)
The original motivation of the Alexandria Project was to create a
digital library that could both reproduce and extend the content
and functionality of a traditional research map library, specifically
the Map and Imagery Laboratory (MIL) at the University of
California, Santa Barbara (UCSB) Davidson Library. In pursuit of
this objective the project developed three successive versions of
the Alexandria Digital Library (ADL) architecture: a "rapid
prototype" [7] system comprising a relational database of map and
imagery metadata, accessed through a desktop geographic
information system (GIS); a "web prototype" [10] system which
replaced the stand-alone GIS with an HTTP server, generating an
HTML forms-based user interface accessible via the World Wide
Web; and the "ADL-3" [8] system which extended the HTTP
server into full-fledged middleware, supporting HTTP interfaces
to multiple clients, and connections to multiple catalog databases.
As our experience with digital libraries grew, the focus of the
Alexandria Project broadened from a geospatial library to an
integrated environment for managing, querying, and presenting
geospatial information, especially for instructional applications
[26]. We refer to these new goals by the umbrella term Alexandria
Digital Earth ProtoType (ADEPT).
This paper presents the ADEPT digital library architecture. We
introduce the architecture's fundamental concepts, and describe
the ADEPT bucket framework, the organizing principle for
ADEPT queries and metadata. We then detail the architecture's
standard interfaces and describe its current (January 2002)
implementation. We conclude with a description of the new
collection discovery service.

2. ARCHITECTURE OVERVIEW
In this section we describe the ADEPT architecture in terms of its
component objects and the information flows between them.

2.1 Objects
The ADEPT architecture is composed of three kinds of objects:
items, collections, and libraries.
Items are the fundamental objects in ADEPT, and correspond
directly to the "holdings" (e.g. books) in a traditional library. (We
avoid the term "holding", with its connotations of physical
custody, when referring to digital objects.) Items in ADEPT have
identity, but no other innate properties -- all information or
services available for an item must be accessed through higher-
level objects. By not requiring items to do anything other than
exist, ADEPT allows for the broadest possible definition of a
digital library (e.g., a digital catalog of non-digital information).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
JCDL’02, July 13-17, 2002, Portland, Oregon, USA.
Copyright 2002 ACM 1-58113-513-0/02/0007 $5.00

Collections are sets of items. Information about individual items,
as well as about the collection as a whole, is maintained at the
collection level. It is thus possible for different information about
the same item to appear in different collections. Collections may
be heterogeneous (i.e., may "contain" different kinds of items);
however, there are advantages, especially with respect to
collection-level summarization, to having collections be
homogeneous.
Libraries are sets of collections. In most cases, "using" ADEPT
means accessing the client-level services provided by a library.
Libraries expose a single standard set of interfaces to all their
collections, making it possible to issue a single query against
multiple collections. (By contrast, the interfaces to collections are
not standardized; instead, a library has standard mechanisms for
adapting itself to whatever interfaces the collection exposes.)
Libraries may also form peer-to-peer relationships in which they
grant each other remote access to their collections, by redirecting
queries and responses to and from each other.
An ADEPT system is, minimally, a network of one or more
autonomous libraries, each of which provides a uniform interface
to one or more collections, each of which manages metadata for
one or more items (Figure 1).

library
(middleware server)

client

item item item item

library
(middleware server)

proxy collection

collection

collection

AD
EP
T

Figure 1: basic ADEPT architecture

As in the CRADDL architecture [17], a collection is the
fundamental unit of organization, being responsible for the
metadata for both its items and itself. A library is, in effect, a
"collection broker," mediating standardized access to its
collections. In terms of a standard three-tier architecture,
collections correspond to the server tier, and libraries to the
middleware tier. Any application that can access the middleware's
client interfaces can be an ADEPT client -- there is no specific
client defined (or required) by the architecture.

2.2 Information
The ADEPT architecture supports three kinds of externally-visible
information: metadata, queries, and result sets.

2.2.1 Metadata
Metadata is information about items or collections. In the ADEPT
architecture, metadata moves between objects as reports, which
are documents pertaining to single items or collections.

The following kinds of metadata reports are defined by the
ADEPT architecture, specifically as XML DTDs (i.e., each report
is an XML document):
� Collection reports pertain to collections as a whole. They

include descriptive information about the collection (e.g. its
origin), as well as summary information derived from the
collection's items (e.g., their geographic distribution; see Figure
3)

� A bucket report contains the item's metadata mapped (insofar
as is possible) into the ADEPT bucket framework (described in
the next section).

� A scan report contains a brief view of the item's metadata
mapped (again, insofar as possible) to the ADEPT core buckets.

� A full report contains as much of the item's metadata as the
collection is willing to provide. There are no constraints on the
semantics of a full report; the DTD merely specifies a generic
hierarchical encoding suitable for a wide variety of metadata
content standards.

� A browse report contains references (e.g., URLs) to one or
more reduced-resolution representations of the item's contents
(e.g., a thumbnail image). These are typically used by graphical
user interface clients as iconic representations of the item, and
also to help human users qualitatively evaluate the item's
suitability for a particular purpose.

� An access report contains references (e.g. URLs) to one or
more representations of the item's content. Multiple
representations allow an item's content to be made available in a
variety of formats, packagings, compressions, etc.

Note that the access report is the only means by which an item's
content is exposed by ADEPT. Furthermore, access reports are
optional -- the ADEPT architecture does not require that an item's
content be accessible; or, if it is, that it be accessible in any
particular standard format. This allows an ADEPT collection to
refer to an item that it does not own or cannot access.

2.2.2 Queries and result sets
An ADEPT query is a predicate directed at one or more of a
library's collections. A result set is the (possibly empty) set of
identifiers of the items that satisfy the query. ADEPT clients issue
queries to find items of interest, and use the identifiers from result
sets to obtain metadata reports about the items.
ADEPT queries have standard semantics, defined by the ADEPT
bucket framework. This fundamental architectural underpinning
of ADEPT is described in the next section.

3. ADEPT BUCKET FRAMEWORK
Our experience with various collection-providing groups
(including MIL, the Earth System Science Workbench [6], and
the UC Berkeley Digital Library Project [28]) is that collection
development is difficult, laborious, understaffed, and
underfunded. Constraints imposed by the group's mission,
customer requirements, idiosyncrasies associated with the
collection content, etc. typically require the group to focus most
of its effort on providing customized, content-specific access to
their collections. To succeed as an alternative, universal means of
access, ADEPT must minimize the requirements it places on
already-burdened collection providers.

It is also our experience that, despite the availability of many
well-known metadata standards, collection-providing groups often
work with (or are forced to work with) locally-defined,
idiosyncratic metadata. Even government agencies such as the
U.S. Geological Survey and its affiliates, which are nominally
mandated to use the FGDC Content Standard for Digital
Geospatial Metadata [5], use many different standards, ranging
from the published and documented (e.g., [20]) to the entirely
undocumented. ADEPT must therefore allow collection providers
to use source metadata -- metadata unprocessed and
untransformed from its native state as employed by the collection
-- to the greatest extent possible. It is ADEPT's goal to provide
uniform client services across heterogeneous collections, and in
particular, to provide 1) common high-level search and
description services, and 2) structured means of discovering and
exploiting lower-level, collection- and/or item-specific search and
description services.
These two considerations -- placing minimal requirements on
collection providers, and providing uniform client services -- lead
to the ADEPT bucket framework: a specification governing
semantics, mapping, and representation of metadata for the
specific purpose of providing certain search and description
services. The framework is predicated on the following
assumptions:
� Collection items have metadata.
� Item metadata is of relatively high quality, with known, well-

defined semantics.
� Item metadata is mappable to "core" buckets (described

below).
Although these assumptions clearly do not apply universally [16],
in our experience enough collections satisfy these assumptions to
make the ADEPT architecture of value.
The current bucket framework reflects extensive changes from the
original specification [9], including unification of search and
description functionality and semantics, completion of the
semantic definition of the buckets and delineation of bucket types,
and support for metadata source tracking and qualified searches.

3.1 Bucket definition
A bucket is an abstract, strongly typed metadata category with
defined search semantics, to which source metadata is mapped.
The ADEPT bucket framework specification defines the
semantics, syntactic representation, and functional behavior of
buckets, as well as the mapping of source metadata fields.
We use the term "metadata category", as opposed to "metadata
field," to emphasize that the framework is not a metadata content
standard. Collection providers need not use buckets directly or
internally; rather, the framework includes support for explicitly
representing the mapping of source metadata to buckets. Consider
an item that has FGDC source metadata, by which we mean that
the item directly associates values with FGDC metadata fields, for
example:

Citation/Originator = "U.S.
Geological Survey"

In the ADEPT bucket framework, buckets are populated with
tuples indicating the metadata value, the source of the metadata,
and its appropriateness for discovery. (Metadata marked as
inappropriate for discovery is ignored during searches but still

returned as part of the item's description.) The mapping of the
above example to the "Originator" bucket would be represented
conceptually as:

Originator = {(FGDC, 1.1/8.1,
"Citation/Originator", "U.S.
Geological Survey", searchable)}

We say that buckets are abstract, or high-level, because they are
intended to aggregate semantically similar metadata fields.
Buckets elide small semantic and syntactic differences in favor of
providing uniform, high-level search and description services. The
aggregation may occur across the items in a collection: for
example, one item in a collection may populate the Originator
bucket with the FGDC Citation/Originator field, while
another may populate it with the MARC Main Entry--
Personal Name field. Or, a single item may populate a bucket
with multiple values from the same or different metadata sources,
as in this example:

Originator = {(FGDC, 1.1/8.1,
"Citation/Originator", "U.S.
Geological Survey", searchable),
(USGS DOQ, PRODUCER, "Producer",
"Photo Science, Inc.", searchable)}

Combining metadata mapping and aggregation allows a client to
operate at two levels. A client can search for items, and a
collection can describe items, by a high-level category like
Originator without the client having to understand source
metadata fields or their content standards. At the same time, a
client can view the lower-level, source metadata if desired. The
ADEPT bucket framework also supports "drilling down" into
buckets; that is, searching by specific metadata fields. For
example, a client can search a collection's Originator bucket,
but match on only the FGDC Citation/Originator field
where it has been mapped.
Buckets are strongly typed, and thus restrict data type and
representation of the values they may be populated with. For
example, the Originator bucket specifies just an unstructured
text type, but the Date bucket declares that it can be populated
only with calendar dates, and ranges of calendar dates, expressed
in ISO 8601 [14] format.
A bucket also defines its search semantics by specifying its
allowable query operands and operators, as well as the semantics
of matching against items that have mapped multiple values to the
bucket. For example, the Date bucket specifies that it can be
searched by specifying a range of calendar dates and using one of
the operators intersects, contains, or within. Multiple
values mapped to the Date bucket are treated severally; i.e., the
constraint is applied to each value independently and the results
are then logically OR-ed together. Search semantics are typically
left slightly under-specified to accommodate multiple
implementations. For example, the Originator bucket defines
a contains-all-words query operator, but the exact
definition of what constitutes a "word" is left to the
implementation.
The advantage of combining (semantically loose) metadata
aggregation with (semantically rigorous) strong typing is that the
ADEPT bucket framework achieves rich search functionality
while remaining flexible enough so as to have broad applicability.

Buckets have simple names such as Date and Originator.
Although there is no mechanism for qualifying names, we intend
that there be relatively few commonly agreed-upon buckets, with
collections defining only a limited number of more domain- and
item-specific buckets, and so we do not anticipate name clashes.
Buckets are generally independent and orthogonal, but there are
cases where two buckets have a relationship to each other. For
example, the Title bucket is a sub-bucket of the Subject-
related text bucket, meaning that the values mapped to the
Subject-related text bucket must include the values
mapped to the Title bucket, and therefore every match against
the Title bucket is a match against the Subject-related
text bucket. Such relationships are defined by convention only;
the ADEPT bucket framework provides no formal means of
expressing such relationships.

3.2 Bucket types
We have found it advantageous during software development to
work with bucket types. A bucket type captures that portion of a
bucket definition that has functional implications: the data type
and syntactic representation of bucket values, and the allowable
query operators and operands. The purely semantic portions of a
bucket definition (the bucket’s name and semantic definition) are
then left to configuration files and such.
ADEPT has defined six bucket types (Table 1.)

Other bucket types are certainly conceivable, such as bucket types
based on new metadata data types; bucket types providing
domain-specific searches (e.g., that support finding satellite
imagery by ubiquitous path/row identifiers); and bucket types that
provide actual content searches (e.g., that support finding images
by content-based characteristics). In the current framework,
adding a bucket type requires modifying central XML

specifications. A future version of the framework may make this
process more distributed and extensible.

3.3 The ADEPT core buckets
The bucket types described above are defined architecturally, but
the buckets actually in use are defined by collections and items.
To mitigate the chaos that would result from each collection
defining its own unique buckets, ADEPT has defined a set of
standard buckets, to support cross-collection uniformity.
Essentially, defining these standard buckets amounts to reserving
certain bucket names.
The ten core buckets (Table 2) are intended to be simple,
universally applicable, easily and broadly populated, and above
all, useful for concise description and searchability. The buckets
were originally [9] designed based on our experiences working
with geospatial data and other types of scientific data, and after
looking closely at similar efforts such as GILS and Dublin Core.
The ADEPT core buckets share many similarities with Dublin
Core [3, 4] in particular. The differences between the two
frameworks result from their different origins and purposes.
Dublin Core was developed to facilitate description, while buckets
have been developed to support searching. For example, the
qualified Dublin Core field DC.Coverage.Spatial defines
multiple means of specifying geographic locations (coordinate-
defined points and boxes, country codes, place names, etc.), the

primary intent being to increase specificity and decrease
ambiguity. However, such a system is too general to support a
spatial search service. The ADEPT Geographic location is
more flexible than DC.Coverage.Spatial in some ways
(e.g., it accepts more types of coordinate-defined geographic
regions), but it is also more tightly constrained in other, key ways
(e.g., it accepts only coordinate-defined regions) so as to support a
spatial search service.

Table 1: ADEPT bucket types

Query bucket type value type

term type operators
spatial any of several types of geometric regions defined in

WGS84 latitude / longitude coordinates, expressed in
an ADEPT-defined syntax

WGS84 box or polygon

temporal (range of) calendar date(s) in ISO 8601 syntax

contains,
overlaps,
is-contained-in

hierarchical term from controlled vocabulary or thesaurus is-a

textual text contains-all-words,
contains-any-words,
contains-phrase

qualified textual text with optional associated namespace matches

numeric real number in standard scientific notation

same as value type

standard relational operators

3.4 Role of buckets in the ADEPT
architecture
The ADEPT bucket framework plays three specific roles in the
ADEPT architecture of the ADEPT core system: describing items,
searching for items, and characterizing collections.
The bucket framework provides an XML format for encoding an
item's source metadata mappings. The format is capable of
representing mappings to any buckets that adhere to the ADEPT
bucket types. A collection returns a document in this format as the
"bucket" view of the item-level metadata for an item.
The framework also provides an XML format for the ADEPT
query language. The query language is capable representing
Boolean combinations of constraints against arbitrary buckets,
and arbitrary source fields mapped to buckets, again subject only
to their adherence to the ADEPT bucket types. A query submitted
to the ADEPT middleware is a document in this format.
Finally, the XML format for the ADEPT collection-level metadata
includes structures for recording statistical overviews of the
collection's metadata mappings. For example, a collection can
record that it supports the Originator bucket, and moreover
that a given number of its items have an FGDC
Citation/Originator field and map that field to that
bucket. In this way a client can gain substantial information
regarding a collection's support for buckets and the nature of the
underlying, source metadata.

3.5 Comparison with Other Approaches
In any system in which information flows from provider to
consumer, it is instructive to look at what knowledge about the
underlying information is captured and exploited by the system

itself, for this is indicative of how much functionality the system
can provide over that information. To take an extreme example, a
system that treats all input as bit streams affords relatively little
functionality (copy bits, compress stream, etc.), whereas a system
that recognizes that inputs are word processing files can provide
much richer functionality (e.g., repagination).
To look at two examples in the realm of digital libraries, consider
first the World Wide Web, which for the purposes of this
discussion we define as HTML documents delivered via the
HTTP protocol. Although one can express all sorts of things in
HTML, the actual semantic content of HTML tags and HTTP
headers is extremely low. As a consequence, the functionality
afforded by basic Web technology is limited to delivering
documents and rendering them for direct human consumption.
By contrast, in a traditional library cataloging system, Machine-
Readable Cataloging (MARC) [18] records prepared according to
the Anglo-American Cataloging Rules (AACR2) [11] are queried
and delivered via the Z39.50 [29] protocol. This system explicitly
captures extremely fine-grained distinctions (e.g., "date of
publication" versus "date of treaty signing"). So, in theory (though
admittedly, not in practice) such a system affords much richer
functionality.
These two examples represent extremes of the tradeoffs between
structure and standardization (or, more negatively, complexity and
"heaviness") on the one hand, and flexibility and generality (or,
simplicity and "lightness") on the other. This tradeoff is
graphically represented in Figure 2:

Table 2: ADEPT core buckets

Bucket name Bucket type Description Approximate Dublin Core
equivalent

Subject-related text text indicative of the subject of the item, not
necessarily from controlled vocabularies.

DC.Subject

Title the item's title. This bucket is a sub-bucket of
Subject-related text.

DC.Title

Assigned term subject-related terms from controlled
vocabularies. This bucket is a sub-bucket of
Subject-related text.

qualified DC.Subject

Originator

textual

names of entities related to the origination of
the item

DC.Creator +
DC.Publisher

Geographic location Spatial the subset of the Earth' surface to which the
item is relevant

DC.Coverage.Spatial

Date Temporal the calendar dates to which the item is relevant DC.Coverage.Temporal

Object type ADL Object Type Thesaurus (image, map,
thesis, sound recording, etc.)

DC.Type

Feature type ADL Feature Type Thesaurus (river,
mountain, park, city, etc.)

none

Format

hierarchical

ADL Object Format Thesaurus (loosely based
on MIME)

DC.Format

Identifier Qualified textual names and codes that function as unique
identifiers

DC.Identifier

Z39.50+MARC+AACR2

ADEPTSDLIP

OAI

HTTP+
HTML

SOAPse
m

an
tic

 ri
ch

ne
ss

generality structure

Figure 2: Interoperabilty tradeoffs
We believe there is a "sweet spot" in this figure: a set of
architectural design tradeoffs that provide sufficient structure so
as to afford rich functionality, and yet retain sufficient simplicity
and generality so as to be flexible, broadly applicable, and easily
implemented.
The Simple Digital Library Interoperability Protocol (SDLIP)
[22] represents one effort to attain this sweet spot. The ADEPT
architecture represents another, with ADEPT providing slightly
greater structure so as to afford richer functionality. As a concrete
example of the differences between SDLIP and ADEPT, consider
how the two systems treat query languages. SDLIP does not
specify a query language; it provides only a means of identifying
query languages. Thus an SDLIP client wishing to query will get
no support from SDLIP itself; query languages are effectively part
of the underlying information flow, i.e., something to be
interpreted and negotiated on a collection-by-collection basis.
By contrast, ADEPT provides a standard query language. The
language is generic and extensible, and there is some flexibility in
how collections may implement the language, but nevertheless,
there are sufficient structures in the language, and there is
sufficient commonality across collections, that it is possible for an
ADEPT client to query arbitrary collections with no a priori
analysis or agreements required.

4. IMPLEMENTATION ISSUES
4.1 Middleware
The ADEPT middleware server has been the basis for the
Alexandria Digital Library's operational system since 1999, and as
such it is relatively robust and reliable. Newer features such as
intra-bucket searches, personal collections, and the collection
discovery service are still under development at this writing (April
2002).
The current ADEPT middleware server is written in Java and
Python and can be run as a web application inside a servlet
container [2], as a standalone RMI server, or both. Personal
collections are supported by an embedded Berkeley DB database

[24]. External collections are supported by a generic relational
database connection.
The middleware currently supports the following public client
interfaces, each as an HTTP-addressable servlet:
� Configuration: Get a list of the collections the middleware is

currently connected to.
� Collection: Get the collection metadata document for the

specified collection.
� Query: Pass a query to one or more collections. Queries are

asynchronous. Running queries may be terminated with the
Cancel interface. Query result sets accumulated by the
middleware are retrieved with the Results interface.

� Metadata: Get a standard metadata report for the specified
item from the specified collection.

The middleware also supports maintenance interfaces that report
its status, and manage its connections to local and remote
collections.

4.2 Support for relational databases
To date, most ADEPT collections have been implemented with
relational technology (i.e., metadata fields stored in tables in
relational database management systems). We have therefore
developed a generic software component, the "Bucket99 driver",
which accesses a relational database over a JDBC connection and
which translates bucket-level search and description requests into
appropriate SQL statements. The Bucket99 driver makes an
arbitrary relational database look like an ADEPT collection.
The crux of the driver is a generic query translator, implemented
in the Python scripting language, which converts Boolean
combinations of query constraints into an SQL query. The
translator works from an abstract model of a relational bucket
implementation (an extensive configuration file supplies the
necessary specifics), comprising, for each bucket:
� A table T whose rows correspond to items in the collection

that have value(s) for the bucket, and a column within T that
holds item identifiers.

� Zero or more auxiliary tables that are related to T by given
relationships and that are required to implement bucket
semantics.

� A table cardinality that indicates how many table rows are
potentially associated with each collection item. Possible values
are: exactly one; zero or one; zero or more; one or more.

� An implementation paradigm: a set of rules that describes
how an atomic constraint against the bucket is translated into a
constraint against T and T’s auxiliary tables. Specifically, a
paradigm is a coordinated set of functions that translates a
constraint into an SQL WHERE clause fragment. ADEPT
supplies over a dozen paradigms for commonly-encountered
implementation strategies. For example, for textual buckets
ADEPT supplies paradigms that support the Verity and
Excalibur text engines as well as two paradigms that use
VARCHAR columns. For spatial buckets ADEPT supplies
paradigms for two Informix spatial DataBlades (MapInfo and
Geodetic) as well as a paradigm implementing bounding boxes
with numeric columns.

� An optional field selection condition. If drill-down capability
for the bucket is implemented using multiple rows per item, one
row per mapped source field, then this condition selects the
appropriate row.

The real power of ADEPT's query translation system is that any
relational structure matching the Bucket99 abstract model can be
treated as a bucket. The model is semantically rich enough to
enable the query translator to translate arbitrary boolean
combinations of bucket query constraints into SQL.

4.3 Access Control
The ADEPT architecture provides access control points (ACPs) at
each middleware service and at each interface between a
middleware service and a collection's implementation of the
service. At each ACP a gatekeeper may be installed. Functionally,
a gatekeeper accepts the parameters of a proposed service request
and returns a boolean allow/disallow response.
The current middleware implementation includes several
"generic" gatekeepers, which examine only the generic attributes
of a request (e.g., the client's IP address).
� ConstantGatekeeper: always allow or disallow.
� IPAddressGatekeeper: allow if client IP address matches pre-

configured patterns.
� BasicPasswordGatekeeper: allow if HTTP "Basic"

username/password authentication is satisfied.
� CombinationGatekeeper: allow if a Boolean combination of

other gatekeepers is satisfied. (E.g., "Allow all requests from IP
address set S1, or all requests from IP address set S2 that also
specify a valid username/password from database D1.")

Gatekeepers not yet developed (but fully supported by the
ADEPT architecture) could support finer-grained access control.
For example, a collection-level gatekeeper to the middleware's
Metadata service might allow access based on both the client
making the request and the specific report being requested.
Gatekeepers can be installed and independently configured at any
ACP. Gatekeepers are installed by dynamic class loading, so new
gatekeepers can be developed without modifying ADL in any
way.

4.4 Collection statistics
We have also developed a software package for gathering,
processing, and rendering the statistical portion of the collection-
level metadata (the spatial and temporal histograms and the counts
of items) for collections implemented in relational databases. The
package requires only a command-line SQL interface to the
database, and hence is largely independent of database vendor,
but it is otherwise highly Unix-specific and relies on numerous
third-party packages (NetPBM, Gnuplot, etc.). We plan to rewrite
this package to be more in line with the middleware server, and to
be more easily configured.

5. COLLECTION DISCOVERY SERVICE
A client wishing to access ADEPT must first know what libraries
and collections exist. For this reason the ADEPT architecture has
been extended with a central collection discovery service: a
registry of known collections and a search capability that allows
clients to find relevant collections.

5.1 Central Registry
Any distributed system must provide some kind of entrance or
starting point for clients. Completely decentralized systems such
as the World Wide Web and Gnutella [15] eschew any central
architectural artifact in favor of non-architectural mechanisms
(e.g., word-of-mouth). For ADEPT's purposes, we believe it is
simpler, and sufficiently manageable and scalable, for there to be
a central registry of known collections.
The ADEPT collection discovery service (CDS) provides such a
registry. A middleware server coming online registers itself with
the CDS, at a well-known address. Thereafter the CDS
periodically (e.g., daily) retrieves the collection-level metadata for
each of the middleware server's collections. (The "update
frequency" field in the collection-level metadata might be used
someday to suggest appropriate polling frequencies.) A
middleware server that fails to respond after some interval (e.g., a
week) is considered defunct.
There can be more than one CDS -- we anticipate collection
discovery services oriented around domains or user communities
such as the National Science Digital Library (NSDL) [19]. A
middleware server may register itself with any number of
collection discovery services.
The CDS registry is sufficient for finding collections, but as a
complete solution it scales very poorly. Given little or no
information about collections, a client wishing to find information
in the system can do so only by querying every collection every
time. The unworkability of this approach was demonstrated by an
early version of the FGDC Clearinghouse [21]. Visitors to the
Clearinghouse website in 1999-2000 were presented with a simple
list of collections (sites in Clearinghouse parlance) with no
context other than a name (e.g., "Southwest Data Center
Clearinghouse"). Additional information about sites could only be
obtained manually and individually. (The Clearinghouse has since
improved its interface to include a preliminary collection
identification phase.)

5.2 Collection Relevance
The CDS harvests, stores, and indexes collection-level metadata
for each known collection. ADEPT has specified a content
standard for this metadata [13]. The portions of the standard
relevant to this discussion include:
� spatial histograms indicating the geographic coverage of the

items in the collection. A spatial histogram is a two-dimensional
histogram whose domain is the Earth's surface, and in which a
cell value indicates the number of collection items that 1) have a
value for the Geographic location bucket, and 2) whose
value overlaps the cell. A graphic rendering of a spatial
histogram is shown in Figure 3. The data structure computed
and stored is an Euler histogram, which is a slight variation of a
simple histogram that supports range searching [27].

Figure 3: Spatial histogram example

� analogous to the spatial histogram, temporal histograms
indicating the calendrical coverage of the collection.
Specifically, a temporal histogram is a one-dimensional
histogram whose domain is calendrical time, and in which a cell
value indicates the number of collection items that 1) have a
value for the Date bucket, and 2) whose value overlaps the
cell. Again, the histogram is an Euler histogram.

� The controlled vocabularies used to categorize items in the
collection, and, for each vocabulary term, the number of items
in the collection relevant to the term. If a vocabulary is a
thesaurus (that is, supports broader/narrower relationships
between terms), the counts reflect the specificity of the terms.
So, for example, if "images" is a broader term for
"photographs", then the number of images includes the number
of photographs.

The CDS allows clients to rank collections by each of the above
three quantities. For example, a client specifies a spatial or
temporal query in the form of a geographic region or time period,
and the CDS returns a (possibly truncated) list of the known
collections ranked by the number of items each collection has that
spatially or temporally overlap the query region. A vocabulary
query takes the form of a single vocabulary term, and ranking of
results is by the number of items associated with the term.
Conjunctions of queries are discussed under Limitations, below.
It should be noted that the CDS's query language is essentially a
subset of middleware's query language, i.e., the query language
used to query individual collections. Thus a client can formulate a
single query that can be used to, in effectively one step, both
identify relevant collections and subsequently search for items
within those collections.

5.3 Scalability
Evaluating a query region against an Euler histogram takes
constant time [1]. The histograms and item counts amount to only
a few kilobytes per collection, and thus can all be stored in
primary memory. We therefore anticipate that the CDS can easily
accommodate tens of thousands of collections, and answer queries
with reasonable speed, without having to resort to more
sophisticated indexing and querying techniques.

5.4 Limitations
There are several limitations to our approach to collection
discovery. First, the CDS, as described above, cannot perform
joined queries. For example, consider the query "Find collections
that are likely to contain aerial photographs of Southern
California taken in the 1930s." The CDS can rank collections by
the numbers of items relevant to Southern California; by the
numbers of items relevant to the 1930s; and by the numbers of

aerial photographs. But it cannot rank collections on the joint
condition because the underlying statistics are gathered
independently. Currently we approximate joint conditions by
assuming that the statistics are linked. Under this heuristic, a
collection with lots of aerial photographs and good coverage of
the 1930s is presumed to contain relatively many aerial
photographs taken in the 1930s. We are exploring new data
structures that explicitly capture joint statistics and yet are still
compact and easy to compute [23].
Second, the CDS relies on binary statistics: an item is either
relevant or it is not. A world map drawn on the back of a napkin
thus has the same spatial relevance as a high-resolution, multi-
terabyte dataset with worldwide coverage. We are working on
incorporating resolution (specifically, minimum feature size) as a
way of approximating information density. (I.e., the dataset has
much higher information density than the napkin, and thus would
rank higher.) Ideally, one could constrain both minimum feature
size and information density -- after all, there are times when one
indeed wants the napkin and not the dataset.
Third, the CDS is not especially effective for collections that are
not well discriminated by geographic space, calendrical time, or
controlled vocabulary terms, or which contain items that lack the
metadata supporting such discrimination. A possible solution may
be to augment the CDS with an approach based on word
frequency, such as that used in STARTS [12].

6. ACKNOWLEDGEMENTS
We thank Larry Carver, Linda Hill, Mary Larsgaard, Terry Smith,
and David Valentine for their contributions to the design and
implementation of the ADEPT architecture. The work described
herein was supported by the National Science Foundation under
cooperative agreement IIS-9817432.

7. REFERENCES
[1] Beigel, R. and Tanin, E., The geometry of browsing. in Latin

American Symposium on Theoretical Informatics, (Brazil,
1998), 331-340.

[2] Coward, D. Java Servlet API Specification, Sun
Microsystems, Inc., 2001.

[3] Dublin Core Metadata Initiative. Dublin Core Metadata
Element Set, Version 1.1: Reference Description, Dublin
Core Metadata Initiative, 1997.

[4] Dublin Core Metadata Initiative. Dublin Core Qualifiers,
Dublin Core Metadata Initiative, 2000.

[5] Federal Geographic Data Committee. Content standard for
digital geospatial metadata (FGDC-STD-001-1998), Federal
Geographic Data Committee, Washington, DC, 1998.

[6] Frew, J. and Bose, R., Earth System Science Workbench: A
Data Management Infrastructure for Earth Science Products.
in SSDBM 2001: Thirteenth International Conference on
Scientific and Statistical Database Management, (George
Mason University, Fairfax, VA, 2001), IEEE Computer
Society, 180-189.

[7] Frew, J., Carver, L., Fischer, C., Goodchild, M., Larsgaard,
M., Smith, T. and Zheng, Q., The Alexandria Rapid
Prototype: building a digital library for spatial information.
in 1995 ESRI International User Conference, (Palm Springs,
CA, 1995), Environmental Systems Research Institute, Inc.

[8] Frew, J., Freeston, M., Freitas, N., Hill, L., Janee, G.,
Lovette, K., Nideffer, R., Smith, T. and Zheng, Q. The
Alexandria Digital Library architecture. International Journal
on Digital Libraries, 2 (4). 259-268.

[9] Frew, J., Freeston, M., Hill, L., Janee, G., Larsgaard, M. and
Zheng, Q., Generic query metadata for geospatial digital
libraries. in Third IEEE META-DATA Conference,
(National Institutes of Health, Bethesda, Maryland, 1999).

[10] Frew, J., Freeston, M., Kemp, R., Simpson, J., Smith, T.,
Wells, A. and Zheng, Q. The Alexandria Digital Library
testbed. D-Lib Magazine, 2 (7/8).

[11] Gorman, M. and Winkler, P.W. (eds.). Anglo-American
Cataloguing Rules, 2nd ed. (AACR2). American Library
Association, Chicago, IL, 1978.

[12] Gravano, L., Chang, C.-C.K., Garcia-Molina, H. and
Paepcke, A., STARTS: Stanford Proposal for Internet Meta-
Searching. in SIGMOD 1997: Proceedings of the ACM
SIGMOD International Conference on Management of Data,
(1997), ACM Press, 207-218.

[13] Hill, L., Janee, G., Dolin, R., Frew, J. and Larsgaard, M.
Collection metadata solutions for digital library applications.
Journal of the American Society for Information Science
(JASIS), 50 (13). 1169-1181.

[14] nternational Organization for Standardization. Data elements
and interchange formats - information interchange -
Representation of dates and times (ISO 8601:1988),
International Organization for Standardization, 1988.

[15] Kan, G. Gnutella. in Oram, A. ed. Peer-to-Peer: Harnessing
the Benefits of a Disruptive Technology, O'Reilly and
Associates, Inc., Sebastopol, CA, 2001, 94-122.

[16] Lagoze, C. Keeping Dublin Core Simple: Cross-Domain
Discovery or Resource Description? D-Lib Magazine, 7 (1).

[17] Lagoze, C. and Fielding, D. Defining Collections in
Distributed Digital Libraries. D-Lib Magazine, 4 (11).

[18] Library of Congress Cataloging Distribution Service MARC
21 Format for Bibliographic Data. Library of Congress,
1999.

[19] Manduca, C.A., McMartin, F.P. and Mogk, D.W. Pathways
to Progress: Vision and Plans for Developing the NSDL,
National Science, Mathematics, Engineering, and
Technology (SMET) Education Digital Library (NSDL),
2001.

[20] National Mapping Program. Standards for Digital
Orthophotos, U.S. Geological Survey, National Mapping
Division, 1996.

[21] Nebert, D., Supporting Search for Spatial Data on the
Internet: What it means to be a Clearinghouse Node. in 1996
ESRI International User Conference, (Palm Springs, CA,
1996), Environmental Systems Research Institute, Inc.

[22] Paepcke, A., Brandriff, R., Janee, G., Larson, R.,
Ludaescher, B., Melnik, S. and Raghavan, S. Search
Middleware and the Simple Digital Library Interoperability
Protocol. D-Lib Magazine, 6 (3).

[23] Riedewald, M., Agrawal, D. and El Abbadi, A., Flexible
Data Cubes for Online Aggregation. in International
Conference on Database Theory (ICDT), (2001), 159-173.

[24] Sleepycat Software Inc. Berkeley DB. New Riders
Publishing, 2001.

[25] Smith, T. and Frew, J. Alexandria Digital Library.
Communications of the ACM, 38 (4). 61-62.

[26] Smith, T.R., Janee, G., Frew, J. and Coleman, A., The
Alexandria Digital Earth Prototype System. in JCDL 2001:
First ACM/IEEE-CS Joint Conference on Digital Libraries,
(Roanoke, VA, 2001), ACM Press, 118-119.

[27] Sun, C., Agrawal, D. and El Abbadi, A., Exploring spatial
datasets with histograms. in International Conference on
Data Engineering (ICDE 2002), (San Jose, CA, 2002), (to
appear).

[28] Wilensky, R. UC Berkeley's Digital Library project.
Communications of the ACM, 38 (4). 60.

[29] Z39.50 Maintenance Agency Information Retrieval (Z39.50):
Application Service Definition and Protocol Specification
(ANSI/NISO Z39.50-1995). NISO Press, Bethesda, MD,
1995.

