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ABSTRACT 
The Alexandria Digital Earth ProtoType (ADEPT) architecture is 
a framework for building distributed digital libraries of 
georeferenced information. An ADEPT system comprises one or 
more autonomous libraries, each of which provides a uniform 
interface to one or more collections, each of which manages 
metadata for one or more items. The primary standard on which 
the architecture is based is the ADEPT bucket framework, which 
defines uniform client-level metadata query services that are 
compatible with heterogeneous underlying collections. ADEPT 
functionality strikes a balance between the simplicity of Web 
document delivery and the richness of Z39.50. The current 
ADEPT implementation runs as servlet-based middleware and 
supports collections housed in arbitrary relational databases. 

Categories and Subject Descriptors 
H.3.7 [Digital Libraries]: Systems Issues; D.2.12 
[Interoperability]: Data mapping; H.3.5 [Online Information 
Services]: Web-based services. 

General Terms 
Design, Standardization. 

Keywords 
bucket framework; collection discovery; distribution; 
interoperability; metadata. 

1. INTRODUCTION 
The Alexandria Project [25] is a consortium of researchers, 
engineers, and educators, spanning the academic, public, and 
private sectors, working to develop distributed digital libraries for 
heterogeneous georeferenced information. Distributed means that 
a library's components may be spread across the Internet, as well 
as coexisting on a single desktop. Heterogeneous means that a 
library may contain multiple types of digital information, 
including non-traditional items such as remotely-sensed imagery, 
executable models, and multimedia instructional materials. 

Georeferenced means that, whenever possible, each item in a 
library is associated with one or more regions on the Earth's 
surface. (We refer to these regions as the item's footprint.) 
The original motivation of the Alexandria Project was to create a 
digital library that could both reproduce and extend the content 
and functionality of a traditional research map library, specifically 
the Map and Imagery Laboratory (MIL) at the University of 
California, Santa Barbara (UCSB) Davidson Library. In pursuit of 
this objective the project developed three successive versions of 
the Alexandria Digital Library (ADL) architecture: a "rapid 
prototype" [7] system comprising a relational database of map and 
imagery metadata, accessed through a desktop geographic 
information system (GIS); a "web prototype" [10] system which 
replaced the stand-alone GIS with an HTTP server, generating an 
HTML forms-based user interface accessible via the World Wide 
Web; and the "ADL-3" [8] system which extended the HTTP 
server into full-fledged middleware, supporting HTTP interfaces 
to multiple clients, and connections to multiple catalog databases. 
As our experience with digital libraries grew, the focus of the 
Alexandria Project broadened from a geospatial library to an 
integrated environment for managing, querying, and presenting 
geospatial information, especially for instructional applications 
[26]. We refer to these new goals by the umbrella term Alexandria 
Digital Earth ProtoType (ADEPT). 
This paper presents the ADEPT digital library architecture. We 
introduce the architecture's fundamental concepts, and describe 
the ADEPT bucket framework, the organizing principle for 
ADEPT queries and metadata. We then detail the architecture's 
standard interfaces and describe its current (January 2002) 
implementation. We conclude with a description of the new 
collection discovery service. 

2. ARCHITECTURE OVERVIEW 
In this section we describe the ADEPT architecture in terms of its 
component objects and the information flows between them. 

2.1 Objects 
The ADEPT architecture is composed of three kinds of objects: 
items, collections, and libraries. 
Items are the fundamental objects in ADEPT, and correspond 
directly to the "holdings" (e.g. books) in a traditional library. (We 
avoid the term "holding", with its connotations of physical 
custody, when referring to digital objects.) Items in ADEPT have 
identity, but no other innate properties -- all information or 
services available for an item must be accessed through higher-
level objects. By not requiring items to do anything other than 
exist, ADEPT allows for the broadest possible definition of a 
digital library (e.g., a digital catalog of non-digital information). 
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Collections are sets of items. Information about individual items, 
as well as about the collection as a whole, is maintained at the 
collection level. It is thus possible for different information about 
the same item to appear in different collections. Collections may 
be heterogeneous (i.e., may "contain" different kinds of items); 
however, there are advantages, especially with respect to 
collection-level summarization, to having collections be 
homogeneous. 
Libraries are sets of collections. In most cases, "using" ADEPT 
means accessing the client-level services provided by a library. 
Libraries expose a single standard set of interfaces to all their 
collections, making it possible to issue a single query against 
multiple collections. (By contrast, the interfaces to collections are 
not standardized; instead, a library has standard mechanisms for 
adapting itself to whatever interfaces the collection exposes.) 
Libraries may also form peer-to-peer relationships in which they 
grant each other remote access to their collections, by redirecting 
queries and responses to and from each other. 
An ADEPT system is, minimally, a network of one or more 
autonomous libraries, each of which provides a uniform interface 
to one or more collections, each of which manages metadata for 
one or more items (Figure 1). 
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Figure 1: basic ADEPT architecture 

As in the CRADDL architecture [17], a collection is the 
fundamental unit of organization, being responsible for the 
metadata for both its items and itself. A library is, in effect, a 
"collection broker," mediating standardized access to its 
collections. In terms of a standard three-tier architecture, 
collections correspond to the server tier, and libraries to the 
middleware tier. Any application that can access the middleware's 
client interfaces can be an ADEPT client -- there is no specific 
client defined (or required) by the architecture. 

2.2 Information 
The ADEPT architecture supports three kinds of externally-visible 
information: metadata, queries, and result sets. 

2.2.1 Metadata 
Metadata is information about items or collections. In the ADEPT 
architecture, metadata moves between objects as reports, which 
are documents pertaining to single items or collections. 

The following kinds of metadata reports are defined by the 
ADEPT architecture, specifically as XML DTDs (i.e., each report 
is an XML document): 
� Collection reports pertain to collections as a whole. They 

include descriptive information about the collection (e.g. its 
origin), as well as summary information derived from the 
collection's items (e.g., their geographic distribution; see Figure 
3) 

� A bucket report contains the item's metadata mapped (insofar 
as is possible) into the ADEPT bucket framework (described in 
the next section). 

� A scan report contains a brief view of the item's metadata 
mapped (again, insofar as possible) to the ADEPT core buckets. 

� A full report contains as much of the item's metadata as the 
collection is willing to provide. There are no constraints on the 
semantics of a full report; the DTD merely specifies a generic 
hierarchical encoding suitable for a wide variety of metadata 
content standards. 

� A browse report contains references (e.g., URLs) to one or 
more reduced-resolution representations of the item's contents 
(e.g., a thumbnail image). These are typically used by graphical 
user interface clients as iconic representations of the item, and 
also to help human users qualitatively evaluate the item's 
suitability for a particular purpose. 

� An access report contains references (e.g. URLs) to one or 
more representations of the item's content. Multiple 
representations allow an item's content to be made available in a 
variety of formats, packagings, compressions, etc. 

Note that the access report is the only means by which an item's 
content is exposed by ADEPT. Furthermore, access reports are 
optional -- the ADEPT architecture does not require that an item's 
content be accessible; or, if it is, that it be accessible in any 
particular standard format. This allows an ADEPT collection to 
refer to an item that it does not own or cannot access. 

2.2.2 Queries and result sets 
An ADEPT query is a predicate directed at one or more of a 
library's collections. A result set is the (possibly empty) set of 
identifiers of the items that satisfy the query. ADEPT clients issue 
queries to find items of interest, and use the identifiers from result 
sets to obtain metadata reports about the items. 
ADEPT queries have standard semantics, defined by the ADEPT 
bucket framework. This fundamental architectural underpinning 
of ADEPT is described in the next section. 

3. ADEPT BUCKET FRAMEWORK 
Our experience with various collection-providing groups 
(including MIL, the Earth System Science Workbench [6], and 
the UC Berkeley Digital Library Project [28]) is that collection 
development is difficult, laborious, understaffed, and 
underfunded. Constraints imposed by the group's mission, 
customer requirements, idiosyncrasies associated with the 
collection content, etc. typically require the group to focus most 
of its effort on providing customized, content-specific access to 
their collections. To succeed as an alternative, universal means of 
access, ADEPT must minimize the requirements it places on 
already-burdened collection providers. 



It is also our experience that, despite the availability of many 
well-known metadata standards, collection-providing groups often 
work with (or are forced to work with) locally-defined, 
idiosyncratic metadata. Even government agencies such as the 
U.S. Geological Survey and its affiliates, which are nominally 
mandated to use the FGDC Content Standard for Digital 
Geospatial Metadata [5], use many different standards, ranging 
from the published and documented (e.g., [20]) to the entirely 
undocumented. ADEPT must therefore allow collection providers 
to use source metadata -- metadata unprocessed and 
untransformed from its native state as employed by the collection 
-- to the greatest extent possible. It is ADEPT's goal to provide 
uniform client services across heterogeneous collections, and in 
particular, to provide 1) common high-level search and 
description services, and 2) structured means of discovering and 
exploiting lower-level, collection- and/or item-specific search and 
description services. 
These two considerations -- placing minimal requirements on 
collection providers, and providing uniform client services -- lead 
to the ADEPT bucket framework: a specification governing 
semantics, mapping, and representation of metadata for the 
specific purpose of providing certain search and description 
services. The framework is predicated on the following 
assumptions: 
� Collection items have metadata. 
� Item metadata is of relatively high quality, with known, well-

defined semantics. 
� Item metadata is mappable to "core" buckets (described 

below). 
Although these assumptions clearly do not apply universally [16], 
in our experience enough collections satisfy these assumptions to 
make the ADEPT architecture of value. 
The current bucket framework reflects extensive changes from the 
original specification [9], including unification of search and 
description functionality and semantics, completion of the 
semantic definition of the buckets and delineation of bucket types, 
and support for metadata source tracking and qualified searches. 

3.1 Bucket definition 
A bucket is an abstract, strongly typed metadata category with 
defined search semantics, to which source metadata is mapped. 
The ADEPT bucket framework specification defines the 
semantics, syntactic representation, and functional behavior of 
buckets, as well as the mapping of source metadata fields. 
We use the term "metadata category", as opposed to "metadata 
field," to emphasize that the framework is not a metadata content 
standard. Collection providers need not use buckets directly or 
internally; rather, the framework includes support for explicitly 
representing the mapping of source metadata to buckets. Consider 
an item that has FGDC source metadata, by which we mean that 
the item directly associates values with FGDC metadata fields, for 
example: 

Citation/Originator = "U.S.
Geological Survey"

In the ADEPT bucket framework, buckets are populated with 
tuples indicating the metadata value, the source of the metadata, 
and its appropriateness for discovery. (Metadata marked as 
inappropriate for discovery is ignored during searches but still 

returned as part of the item's description.) The mapping of the 
above example to the "Originator" bucket would be represented 
conceptually as: 

Originator = {(FGDC, 1.1/8.1,
"Citation/Originator", "U.S.
Geological Survey", searchable)}

We say that buckets are abstract, or high-level, because they are 
intended to aggregate semantically similar metadata fields. 
Buckets elide small semantic and syntactic differences in favor of 
providing uniform, high-level search and description services. The 
aggregation may occur across the items in a collection: for 
example, one item in a collection may populate the Originator 
bucket with the FGDC Citation/Originator field, while 
another may populate it with the MARC Main Entry--
Personal Name field. Or, a single item may populate a bucket 
with multiple values from the same or different metadata sources, 
as in this example: 

Originator = {(FGDC, 1.1/8.1,
"Citation/Originator", "U.S.
Geological Survey", searchable),
(USGS DOQ, PRODUCER, "Producer",
"Photo Science, Inc.", searchable)}

Combining metadata mapping and aggregation allows a client to 
operate at two levels. A client can search for items, and a 
collection can describe items, by a high-level category like 
Originator without the client having to understand source 
metadata fields or their content standards. At the same time, a 
client can view the lower-level, source metadata if desired. The 
ADEPT bucket framework also supports "drilling down" into 
buckets; that is, searching by specific metadata fields. For 
example, a client can search a collection's Originator bucket, 
but match on only the FGDC Citation/Originator field 
where it has been mapped. 
Buckets are strongly typed, and thus restrict data type and 
representation of the values they may be populated with. For 
example, the Originator bucket specifies just an unstructured 
text type, but the Date bucket declares that it can be populated 
only with calendar dates, and ranges of calendar dates, expressed 
in ISO 8601 [14] format. 
A bucket also defines its search semantics by specifying its 
allowable query operands and operators, as well as the semantics 
of matching against items that have mapped multiple values to the 
bucket. For example, the Date bucket specifies that it can be 
searched by specifying a range of calendar dates and using one of 
the operators intersects, contains, or within. Multiple 
values mapped to the Date bucket are treated severally; i.e., the 
constraint is applied to each value independently and the results 
are then logically OR-ed together. Search semantics are typically 
left slightly under-specified to accommodate multiple 
implementations. For example, the Originator bucket defines 
a contains-all-words query operator, but the exact 
definition of what constitutes a "word" is left to the 
implementation. 
The advantage of combining (semantically loose) metadata 
aggregation with (semantically rigorous) strong typing is that the 
ADEPT bucket framework achieves rich search functionality 
while remaining flexible enough so as to have broad applicability. 



Buckets have simple names such as Date and Originator. 
Although there is no mechanism for qualifying names, we intend 
that there be relatively few commonly agreed-upon buckets, with 
collections defining only a limited number of more domain- and 
item-specific buckets, and so we do not anticipate name clashes. 
Buckets are generally independent and orthogonal, but there are 
cases where two buckets have a relationship to each other. For 
example, the Title bucket is a sub-bucket of the Subject-
related text bucket, meaning that the values mapped to the 
Subject-related text bucket must include the values 
mapped to the Title bucket, and therefore every match against 
the Title bucket is a match against the Subject-related
text bucket. Such relationships are defined by convention only; 
the ADEPT bucket framework provides no formal means of 
expressing such relationships. 

3.2 Bucket types  
We have found it advantageous during software development to 
work with bucket types. A bucket type captures that portion of a 
bucket definition that has functional implications: the data type 
and syntactic representation of bucket values, and the allowable 
query operators and operands. The purely semantic portions of a 
bucket definition (the bucket’s name and semantic definition) are 
then left to configuration files and such. 
ADEPT has defined six bucket types (Table 1.) 

Other bucket types are certainly conceivable, such as bucket types 
based on new metadata data types; bucket types providing 
domain-specific searches (e.g., that support finding satellite 
imagery by ubiquitous path/row identifiers); and bucket types that 
provide actual content searches (e.g., that support finding images 
by content-based characteristics). In the current framework, 
adding a bucket type requires modifying central XML 

specifications. A future version of the framework may make this 
process more distributed and extensible. 

3.3 The ADEPT core buckets 
The bucket types described above are defined architecturally, but 
the buckets actually in use are defined by collections and items. 
To mitigate the chaos that would result from each collection 
defining its own unique buckets, ADEPT has defined a set of 
standard buckets, to support cross-collection uniformity. 
Essentially, defining these standard buckets amounts to reserving 
certain bucket names. 
The ten core buckets (Table 2) are intended to be simple, 
universally applicable, easily and broadly populated, and above 
all, useful for concise description and searchability. The buckets 
were originally [9] designed based on our experiences working 
with geospatial data and other types of scientific data, and after 
looking closely at similar efforts such as GILS and Dublin Core. 
The ADEPT core buckets share many similarities with Dublin 
Core [3, 4] in particular. The differences between the two 
frameworks result from their different origins and purposes. 
Dublin Core was developed to facilitate description, while buckets 
have been developed to support searching. For example, the 
qualified Dublin Core field DC.Coverage.Spatial defines 
multiple means of specifying geographic locations (coordinate-
defined points and boxes, country codes, place names, etc.), the 

primary intent being to increase specificity and decrease 
ambiguity. However, such a system is too general to support a 
spatial search service. The ADEPT Geographic location is 
more flexible than DC.Coverage.Spatial in some ways 
(e.g., it accepts more types of coordinate-defined geographic 
regions), but it is also more tightly constrained in other, key ways 
(e.g., it accepts only coordinate-defined regions) so as to support a 
spatial search service. 

Table 1: ADEPT bucket types 

Query bucket type value type 

term type operators 
spatial any of several types of geometric regions defined in 

WGS84 latitude / longitude coordinates, expressed in 
an ADEPT-defined syntax 

WGS84 box or polygon 

temporal (range of) calendar date(s) in ISO 8601 syntax 

contains,
overlaps,
is-contained-in

hierarchical term from controlled vocabulary or thesaurus is-a

textual text contains-all-words,
contains-any-words,
contains-phrase

qualified textual text with optional associated namespace matches

numeric real number in standard scientific notation 

same as value type 

standard relational operators 



3.4 Role of buckets in the ADEPT 
architecture  
The ADEPT bucket framework plays three specific roles in the 
ADEPT architecture of the ADEPT core system: describing items, 
searching for items, and characterizing collections. 
The bucket framework provides an XML format for encoding an 
item's source metadata mappings. The format is capable of 
representing mappings to any buckets that adhere to the ADEPT 
bucket types. A collection returns a document in this format as the 
"bucket" view of the item-level metadata for an item. 
The framework also provides an XML format for the ADEPT 
query language. The query language is capable representing 
Boolean combinations of constraints against arbitrary buckets, 
and arbitrary source fields mapped to buckets, again subject only 
to their adherence to the ADEPT bucket types. A query submitted 
to the ADEPT middleware is a document in this format. 
Finally, the XML format for the ADEPT collection-level metadata 
includes structures for recording statistical overviews of the 
collection's metadata mappings. For example, a collection can 
record that it supports the Originator bucket, and moreover 
that a given number of its items have an FGDC 
Citation/Originator field and map that field to that 
bucket. In this way a client can gain substantial information 
regarding a collection's support for buckets and the nature of the 
underlying, source metadata. 

3.5 Comparison with Other Approaches 
In any system in which information flows from provider to 
consumer, it is instructive to look at what knowledge about the 
underlying information is captured and exploited by the system 

itself, for this is indicative of how much functionality the system 
can provide over that information. To take an extreme example, a 
system that treats all input as bit streams affords relatively little 
functionality (copy bits, compress stream, etc.), whereas a system 
that recognizes that inputs are word processing files can provide 
much richer functionality (e.g., repagination). 
To look at two examples in the realm of digital libraries, consider 
first the World Wide Web, which for the purposes of this 
discussion we define as HTML documents delivered via the 
HTTP protocol. Although one can express all sorts of things in 
HTML, the actual semantic content of HTML tags and HTTP 
headers is extremely low. As a consequence, the functionality 
afforded by basic Web technology is limited to delivering 
documents and rendering them for direct human consumption. 
By contrast, in a traditional library cataloging system, Machine-
Readable Cataloging (MARC) [18] records prepared according to 
the Anglo-American Cataloging Rules (AACR2) [11] are queried 
and delivered via the Z39.50 [29] protocol. This system explicitly 
captures extremely fine-grained distinctions (e.g., "date of 
publication" versus "date of treaty signing"). So, in theory (though 
admittedly, not in practice) such a system affords much richer 
functionality. 
These two examples represent extremes of the tradeoffs between 
structure and standardization (or, more negatively, complexity and 
"heaviness") on the one hand, and flexibility and generality (or, 
simplicity and "lightness") on the other. This tradeoff is 
graphically represented in Figure 2: 

Table 2: ADEPT core buckets 

Bucket name Bucket type Description Approximate Dublin Core 
equivalent 

Subject-related text text indicative of the subject of the item, not 
necessarily from controlled vocabularies. 

DC.Subject

Title the item's title. This bucket is a sub-bucket of 
Subject-related text. 

DC.Title

Assigned term subject-related terms from controlled 
vocabularies. This bucket is a sub-bucket of 
Subject-related text. 

qualified DC.Subject 

Originator

textual 

names of entities related to the origination of 
the item 

DC.Creator +
DC.Publisher

Geographic location Spatial the subset of the Earth' surface to which the 
item is relevant 

DC.Coverage.Spatial

Date Temporal the calendar dates to which the item is relevant DC.Coverage.Temporal

Object type ADL Object Type Thesaurus (image, map, 
thesis, sound recording, etc.) 

DC.Type

Feature type ADL Feature Type Thesaurus (river, 
mountain, park, city, etc.) 

none 

Format

hierarchical 

ADL Object Format Thesaurus (loosely based 
on MIME) 

DC.Format

Identifier Qualified textual names and codes that function as unique 
identifiers 

DC.Identifier
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Figure 2: Interoperabilty tradeoffs 
We believe there is a "sweet spot" in this figure: a set of 
architectural design tradeoffs that provide sufficient structure so 
as to afford rich functionality, and yet retain sufficient simplicity 
and generality so as to be flexible, broadly applicable, and easily 
implemented. 
The Simple Digital Library Interoperability Protocol (SDLIP) 
[22] represents one effort to attain this sweet spot. The ADEPT 
architecture represents another, with ADEPT providing slightly 
greater structure so as to afford richer functionality. As a concrete 
example of the differences between SDLIP and ADEPT, consider 
how the two systems treat query languages. SDLIP does not 
specify a query language; it provides only a means of identifying 
query languages. Thus an SDLIP client wishing to query will get 
no support from SDLIP itself; query languages are effectively part 
of the underlying information flow, i.e., something to be 
interpreted and negotiated on a collection-by-collection basis. 
By contrast, ADEPT provides a standard query language. The 
language is generic and extensible, and there is some flexibility in 
how collections may implement the language, but nevertheless, 
there are sufficient structures in the language, and there is 
sufficient commonality across collections, that it is possible for an 
ADEPT client to query arbitrary collections with no a priori 
analysis or agreements required. 

4. IMPLEMENTATION ISSUES 
4.1 Middleware 
The ADEPT middleware server has been the basis for the 
Alexandria Digital Library's operational system since 1999, and as 
such it is relatively robust and reliable. Newer features such as 
intra-bucket searches, personal collections, and the collection 
discovery service are still under development at this writing (April 
2002). 
The current ADEPT middleware server is written in Java and 
Python and can be run as a web application inside a servlet 
container [2], as a standalone RMI server, or both. Personal 
collections are supported by an embedded Berkeley DB database 

[24]. External collections are supported by a generic relational 
database connection. 
The middleware currently supports the following public client 
interfaces, each as an HTTP-addressable servlet: 
� Configuration: Get a list of the collections the middleware is 

currently connected to. 
� Collection: Get the collection metadata document for the 

specified collection. 
� Query: Pass a query to one or more collections. Queries are 

asynchronous. Running queries may be terminated with the 
Cancel interface. Query result sets accumulated by the 
middleware are retrieved with the Results interface. 

� Metadata: Get a standard metadata report for the specified 
item from the specified collection. 

The middleware also supports maintenance interfaces that report 
its status, and manage its connections to local and remote 
collections. 

4.2 Support for relational databases 
To date, most ADEPT collections have been implemented with 
relational technology (i.e., metadata fields stored in tables in 
relational database management systems). We have therefore 
developed a generic software component, the "Bucket99 driver", 
which accesses a relational database over a JDBC connection and 
which translates bucket-level search and description requests into 
appropriate SQL statements. The Bucket99 driver makes an 
arbitrary relational database look like an ADEPT collection. 
The crux of the driver is a generic query translator, implemented 
in the Python scripting language, which converts Boolean 
combinations of query constraints into an SQL query. The 
translator works from an abstract model of a relational bucket 
implementation (an extensive configuration file supplies the 
necessary specifics), comprising, for each bucket: 
� A table T whose rows correspond to items in the collection 

that have value(s) for the bucket, and a column within T that 
holds item identifiers. 

� Zero or more auxiliary tables that are related to T by given 
relationships and that are required to implement bucket 
semantics. 

� A table cardinality that indicates how many table rows are 
potentially associated with each collection item. Possible values 
are: exactly one; zero or one; zero or more; one or more. 

� An implementation paradigm: a set of rules that describes 
how an atomic constraint against the bucket is translated into a 
constraint against T and T’s auxiliary tables. Specifically, a 
paradigm is a coordinated set of functions that translates a 
constraint into an SQL WHERE clause fragment. ADEPT 
supplies over a dozen paradigms for commonly-encountered 
implementation strategies. For example, for textual buckets 
ADEPT supplies paradigms that support the Verity and 
Excalibur text engines as well as two paradigms that use 
VARCHAR columns. For spatial buckets ADEPT supplies 
paradigms for two Informix spatial DataBlades (MapInfo and 
Geodetic) as well as a paradigm implementing bounding boxes 
with numeric columns. 



� An optional field selection condition. If drill-down capability 
for the bucket is implemented using multiple rows per item, one 
row per mapped source field, then this condition selects the 
appropriate row. 

The real power of ADEPT's query translation system is that any 
relational structure matching the Bucket99 abstract model can be 
treated as a bucket. The model is semantically rich enough to 
enable the query translator to translate arbitrary boolean 
combinations of bucket query constraints into SQL. 

4.3 Access Control 
The ADEPT architecture provides access control points (ACPs) at 
each middleware service and at each interface between a 
middleware service and a collection's implementation of the 
service. At each ACP a gatekeeper may be installed. Functionally, 
a gatekeeper accepts the parameters of a proposed service request 
and returns a boolean allow/disallow response. 
The current middleware implementation includes several 
"generic" gatekeepers, which examine only the generic attributes 
of a request (e.g., the client's IP address). 
� ConstantGatekeeper: always allow or disallow. 
� IPAddressGatekeeper: allow if client IP address matches pre-

configured patterns. 
� BasicPasswordGatekeeper: allow if HTTP "Basic" 

username/password authentication is satisfied. 
� CombinationGatekeeper: allow if a Boolean combination of 

other gatekeepers is satisfied. (E.g., "Allow all requests from IP 
address set S1, or all requests from IP address set S2 that also 
specify a valid username/password from database D1.") 

Gatekeepers not yet developed (but fully supported by the 
ADEPT architecture) could support finer-grained access control. 
For example, a collection-level gatekeeper to the middleware's 
Metadata service might allow access based on both the client 
making the request and the specific report being requested. 
Gatekeepers can be installed and independently configured at any 
ACP. Gatekeepers are installed by dynamic class loading, so new 
gatekeepers can be developed without modifying ADL in any 
way. 

4.4 Collection statistics 
We have also developed a software package for gathering, 
processing, and rendering the statistical portion of the collection-
level metadata (the spatial and temporal histograms and the counts 
of items) for collections implemented in relational databases. The 
package requires only a command-line SQL interface to the 
database, and hence is largely independent of database vendor, 
but it is otherwise highly Unix-specific and relies on numerous 
third-party packages (NetPBM, Gnuplot, etc.). We plan to rewrite 
this package to be more in line with the middleware server, and to 
be more easily configured. 

5. COLLECTION DISCOVERY SERVICE 
A client wishing to access ADEPT must first know what libraries 
and collections exist. For this reason the ADEPT architecture has 
been extended with a central collection discovery service: a 
registry of known collections and a search capability that allows 
clients to find relevant collections. 

5.1 Central Registry 
Any distributed system must provide some kind of entrance or 
starting point for clients. Completely decentralized systems such 
as the World Wide Web and Gnutella [15] eschew any central 
architectural artifact in favor of non-architectural mechanisms 
(e.g., word-of-mouth). For ADEPT's purposes, we believe it is 
simpler, and sufficiently manageable and scalable, for there to be 
a central registry of known collections. 
The ADEPT collection discovery service (CDS) provides such a 
registry. A middleware server coming online registers itself with 
the CDS, at a well-known address. Thereafter the CDS 
periodically (e.g., daily) retrieves the collection-level metadata for 
each of the middleware server's collections. (The "update 
frequency" field in the collection-level metadata might be used 
someday to suggest appropriate polling frequencies.) A 
middleware server that fails to respond after some interval (e.g., a 
week) is considered defunct. 
There can be more than one CDS -- we anticipate collection 
discovery services oriented around domains or user communities 
such as the National Science Digital Library (NSDL) [19]. A 
middleware server may register itself with any number of 
collection discovery services. 
The CDS registry is sufficient for finding collections, but as a 
complete solution it scales very poorly. Given little or no 
information about collections, a client wishing to find information 
in the system can do so only by querying every collection every 
time. The unworkability of this approach was demonstrated by an 
early version of the FGDC Clearinghouse [21]. Visitors to the 
Clearinghouse website in 1999-2000 were presented with a simple 
list of collections (sites in Clearinghouse parlance) with no 
context other than a name (e.g., "Southwest Data Center 
Clearinghouse"). Additional information about sites could only be 
obtained manually and individually. (The Clearinghouse has since 
improved its interface to include a preliminary collection 
identification phase.) 

5.2 Collection Relevance 
The CDS harvests, stores, and indexes collection-level metadata 
for each known collection. ADEPT has specified a content 
standard for this metadata [13]. The portions of the standard 
relevant to this discussion include: 
� spatial histograms indicating the geographic coverage of the 

items in the collection. A spatial histogram is a two-dimensional 
histogram whose domain is the Earth's surface, and in which a 
cell value indicates the number of collection items that 1) have a 
value for the Geographic location bucket, and 2) whose 
value overlaps the cell. A graphic rendering of a spatial 
histogram is shown in Figure 3. The data structure computed 
and stored is an Euler histogram, which is a slight variation of a 
simple histogram that supports range searching [27]. 



 
Figure 3: Spatial histogram example 

� analogous to the spatial histogram, temporal histograms 
indicating the calendrical coverage of the collection. 
Specifically, a temporal histogram is a one-dimensional 
histogram whose domain is calendrical time, and in which a cell 
value indicates the number of collection items that 1) have a 
value for the Date bucket, and 2) whose value overlaps the 
cell. Again, the histogram is an Euler histogram. 

� The controlled vocabularies used to categorize items in the 
collection, and, for each vocabulary term, the number of items 
in the collection relevant to the term. If a vocabulary is a 
thesaurus (that is, supports broader/narrower relationships 
between terms), the counts reflect the specificity of the terms. 
So, for example, if "images" is a broader term for 
"photographs", then the number of images includes the number 
of photographs. 

The CDS allows clients to rank collections by each of the above 
three quantities. For example, a client specifies a spatial or 
temporal query in the form of a geographic region or time period, 
and the CDS returns a (possibly truncated) list of the known 
collections ranked by the number of items each collection has that 
spatially or temporally overlap the query region. A vocabulary 
query takes the form of a single vocabulary term, and ranking of 
results is by the number of items associated with the term. 
Conjunctions of queries are discussed under Limitations, below. 
It should be noted that the CDS's query language is essentially a 
subset of middleware's query language, i.e., the query language 
used to query individual collections. Thus a client can formulate a 
single query that can be used to, in effectively one step, both 
identify relevant collections and subsequently search for items 
within those collections. 

5.3 Scalability 
Evaluating a query region against an Euler histogram takes 
constant time [1]. The histograms and item counts amount to only 
a few kilobytes per collection, and thus can all be stored in 
primary memory. We therefore anticipate that the CDS can easily 
accommodate tens of thousands of collections, and answer queries 
with reasonable speed, without having to resort to more 
sophisticated indexing and querying techniques. 

5.4 Limitations 
There are several limitations to our approach to collection 
discovery. First, the CDS, as described above, cannot perform 
joined queries. For example, consider the query "Find collections 
that are likely to contain aerial photographs of Southern 
California taken in the 1930s." The CDS can rank collections by 
the numbers of items relevant to Southern California; by the 
numbers of items relevant to the 1930s; and by the numbers of 

aerial photographs. But it cannot rank collections on the joint 
condition because the underlying statistics are gathered 
independently. Currently we approximate joint conditions by 
assuming that the statistics are linked. Under this heuristic, a 
collection with lots of aerial photographs and good coverage of 
the 1930s is presumed to contain relatively many aerial 
photographs taken in the 1930s. We are exploring new data 
structures that explicitly capture joint statistics and yet are still 
compact and easy to compute [23]. 
Second, the CDS relies on binary statistics: an item is either 
relevant or it is not. A world map drawn on the back of a napkin 
thus has the same spatial relevance as a high-resolution, multi-
terabyte dataset with worldwide coverage. We are working on 
incorporating resolution (specifically, minimum feature size) as a 
way of approximating information density. (I.e., the dataset has 
much higher information density than the napkin, and thus would 
rank higher.) Ideally, one could constrain both minimum feature 
size and information density -- after all, there are times when one 
indeed wants the napkin and not the dataset. 
Third, the CDS is not especially effective for collections that are 
not well discriminated by geographic space, calendrical time, or 
controlled vocabulary terms, or which contain items that lack the 
metadata supporting such discrimination. A possible solution may 
be to augment the CDS with an approach based on word 
frequency, such as that used in STARTS [12]. 
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